eegprep.eeg_picard#
- eegprep.eeg_picard(EEG, engine=None, posact='off', sortcomps='off', **kwargs)#
Perform ICA decomposition using Picard algorithm.
This function can use either a Python implementation or an EEGLAB (via MATLAB or Octave) implementation.
Parameters#
- EEGdict
EEGLAB-like data structure.
- engineobject, optional
MATLAB or Octave engine instance. If None (default), the Python implementation is used.
- posactstr | bool, optional
If ‘on’ or True, normalize component signs so max(abs(activations)) is positive. Default is ‘off’.
- sortcompsstr | bool, optional
If ‘on’ or True, sort components by descending activation variance. Default is ‘off’.
- **kwargsdict
Additional keyword arguments to be passed to the Picard algorithm. For example, {‘maxiter’: 500}.
Returns#
- dict
The updated EEG structure with ICA fields.