eegprep.eeg_picard#

eegprep.eeg_picard(EEG, engine=None, posact='off', sortcomps='off', **kwargs)#

Perform ICA decomposition using Picard algorithm.

This function can use either a Python implementation or an EEGLAB (via MATLAB or Octave) implementation.

Parameters#

EEGdict

EEGLAB-like data structure.

engineobject, optional

MATLAB or Octave engine instance. If None (default), the Python implementation is used.

posactstr | bool, optional

If ‘on’ or True, normalize component signs so max(abs(activations)) is positive. Default is ‘off’.

sortcompsstr | bool, optional

If ‘on’ or True, sort components by descending activation variance. Default is ‘off’.

**kwargsdict

Additional keyword arguments to be passed to the Picard algorithm. For example, {‘maxiter’: 500}.

Returns#

dict

The updated EEG structure with ICA fields.