References and Citations#
Key Publications#
EEG Preprocessing Methods#
The following papers describe key preprocessing methods implemented in EEGPrep:
Artifact Removal and Cleaning
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
Foundational paper for EEGLAB and many preprocessing techniques
Kothe, C. A., & Makeig, S. (2013). BCILAB: a platform for brain–computer interface development. Journal of Neural Engineering, 10(5), 056014.
Describes ASR (Artifact Subspace Reconstruction) algorithm
Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging human EEG dynamics using independent component analysis. Neuroscience & Biobehavioral Reviews, 30(6), 808-822.
ICA for EEG analysis
Independent Component Analysis (ICA)
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430.
Comprehensive ICA review
Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159.
Infomax ICA algorithm
ICLabel Component Classification
Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: Automated electroencephalographic independent component classification, labeling and brain source estimation. NeuroImage, 198, 181-197.
Deep learning-based IC classification
BIDS Format
Gorgolewski, K. J., Auer, T., Calhoun, V. D., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3, 160044.
BIDS specification paper
Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., et al. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6, 103.
EEG-BIDS extension
Signal Processing
Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data–a practical approach. Journal of Neuroscience Methods, 250, 34-46.
Filter design for EEG
External Resources#
Tutorials and Documentation#
EEG Analysis Tutorials
MNE-Python Tutorials - Comprehensive EEG/MEG analysis tutorials
EEGLAB Wiki - EEGLAB documentation and tutorials
Fieldtrip Tutorials - Fieldtrip analysis tutorials
Signal Processing
Digital Signal Processing - Wikipedia overview
Scipy Signal Processing - Python signal processing library
Machine Learning
Scikit-learn Documentation - Machine learning in Python
PyTorch Documentation - Deep learning framework
Forums and Communities#
GitHub
EEGPrep Issues - Report bugs and ask questions
EEGPrep Discussions - Community discussions
NeuroTalk
NeuroTalk Forums - Neuroscience discussion forums
EEG and neuroimaging discussions
Stack Overflow
EEG Tag - EEG-related questions
Signal Processing Tag - Signal processing questions
r/neuroscience - Neuroscience community
r/MachineLearning - Machine learning discussions
Datasets#
Public EEG Datasets
OpenNeuro - Open neuroimaging datasets in BIDS format
PhysioNet - Biomedical signal databases
EEG Motor Movement/Imagery Dataset - Motor imagery EEG data
Citation Information#
How to Cite EEGPrep#
If you use EEGPrep in your research, please cite it as:
BibTeX:
@software{eegprep2024,
title={EEGPrep: A comprehensive Python EEG preprocessing pipeline},
author={EEGPrep Contributors},
year={2024},
url={https://github.com/NeuroTechX/eegprep}
}
APA Format:
EEGPrep Contributors. (2024). EEGPrep: A comprehensive Python EEG preprocessing pipeline. Retrieved from NeuroTechX/eegprep
Chicago Format:
EEGPrep Contributors. “EEGPrep: A comprehensive Python EEG preprocessing pipeline.” Accessed 2024. NeuroTechX/eegprep.
Citing Dependencies#
If you use specific algorithms, please also cite the original papers:
For ASR (Artifact Subspace Reconstruction):
@article{kothe2013bcilab,
title={BCILAB: a platform for brain--computer interface development},
author={Kothe, Christian A and Makeig, Scott},
journal={Journal of Neural Engineering},
volume={10},
number={5},
pages={056014},
year={2013},
publisher={IOP Publishing}
}
For ICLabel:
@article{pion2019iclabel,
title={ICLabel: Automated electroencephalographic independent component classification, labeling and brain source estimation},
author={Pion-Tonachini, Luca and Kreutz-Delgado, Kenneth and Makeig, Scott},
journal={NeuroImage},
volume={198},
pages={181--197},
year={2019},
publisher={Elsevier}
}
For EEGLAB:
@article{delorme2004eeglab,
title={EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis},
author={Delorme, Arnaud and Makeig, Scott},
journal={Journal of Neuroscience Methods},
volume={134},
number={1},
pages={9--21},
year={2004},
publisher={Elsevier}
}
Acknowledgments#
Contributors#
EEGPrep is developed and maintained by the NeuroTechX community. We thank all contributors who have helped improve the project through code contributions, bug reports, and feedback.
Funding#
EEGPrep development has been supported by:
NeuroTechX community
Open-source software initiatives
Academic institutions
Inspiration and Acknowledgments#
EEGPrep builds upon the excellent work of:
EEGLAB: For pioneering EEG preprocessing and analysis tools
MNE-Python: For comprehensive neuroimaging analysis
Fieldtrip: For robust signal processing methods
Brainstorm: For user-friendly neuroimaging software
We acknowledge the neuroscience and signal processing communities for their contributions to EEG analysis methods.
Getting Help with References#
Check the User Guide for implementation details
Review Examples for practical examples
Search GitHub Issues for related discussions
Contact the maintainers for citation questions
For more information about EEG analysis methods, see the Glossary for terminology definitions.