eegprep#
A comprehensive Python EEG preprocessing pipeline for neuroscience research.
Get started with:
pip install eegprep
Contents:
- API Reference
- Core Functions and Classes
- Preprocessing Functions
- Independent Component Analysis
- Signal Processing Functions
- Input/Output Functions
- Utility Functions
- Core Classes
- Data Loading and Saving
- Preprocessing Functions
- Independent Component Analysis
- Spectral Analysis
- Epoching and Selection
- Visualization
- Format Conversion
- Utilities
- BIDS Pipeline
- Configuration
- User Guide
- Examples
- Contributing to EEGPrep
- Development Setup
- Frequently Asked Questions
- References and Citations
- Changelog
- Glossary
Quick Start#
Installation#
Install eegprep using pip:
pip install eegprep
Basic Usage#
import eegprep
from eegprep import EEGobj
# Load EEG data
eeg = EEGobj.load('data.set')
# Apply preprocessing pipeline
eeg = eegprep.clean_artifacts(eeg)
eeg = eegprep.clean_flatlines(eeg)
eeg = eegprep.clean_channels(eeg)
# Save processed data
eeg.save('data_processed.set')
Features#
Comprehensive preprocessing: Artifact removal, channel cleaning, and data quality assessment
ICA-based component classification: Automatic IC labeling using ICLabel
BIDS compatibility: Direct support for BIDS-formatted EEG datasets
MNE integration: Seamless conversion between eegprep and MNE-Python formats
Flexible pipeline: Mix and match preprocessing steps for your specific needs
Well-documented: Extensive API documentation and user guides
Quick Links#
API Reference - Complete API documentation
User Guide - Detailed usage guides and tutorials
Examples - Example scripts and notebooks
Contributing - Contributing guidelines and code of conduct
Development - Development setup and debugging
FAQ - Frequently asked questions
References - Key publications and related tools
Changelog - Version history and release notes
Glossary - EEG and signal processing terminology
GitHub Repository - Source code and issue tracker